This course teaches how to ask the right questions and extract meaningful insights from complex datasets. Through hands-on lessons, you’ll master industry-standard Python libraries such as matplotlib and seaborn, enabling you to create compelling visualizations like histograms, boxplots, and scatter plots. You'll learn to uncover patterns, relationships, and correlations within your data, and develop a critical eye for interpreting results. You'll also learn about the pitfalls of data interpretation, including the impact of mixed effects and the nuances of Simpson’s Paradox, ensuring you can navigate and communicate findings with confidence. Whether you’re a beginner or looking to deepen your analytical toolkit, this course will empower you to transform raw data into actionable knowledge.

Découvrez de nouvelles compétences avec 30 % de réduction sur les cours dispensés par des experts du secteur. Économisez maintenant.


Data Science Fundamentals Part 2: Unit 1
Ce cours fait partie de Spécialisation Data Science Fundamentals, Part 2

Instructeur : Pearson
Inclus avec
Expérience recommandée
Ce que vous apprendrez
Gain a foundational understanding of Exploratory Data Analysis (EDA) and its historical context.
Develop practical skills in Python data visualization using matplotlib and seaborn.
Learn to identify and interpret relationships and correlations within datasets using advanced charting techniques.
Recognize and avoid common pitfalls in data analysis, including mixed effects and Simpson’s Paradox.
Compétences que vous acquerrez
- Catégorie : Statistical Methods
- Catégorie : Scatter Plots
- Catégorie : Seaborn
- Catégorie : Exploratory Data Analysis
- Catégorie : Correlation Analysis
- Catégorie : Statistical Analysis
- Catégorie : Descriptive Statistics
- Catégorie : Matplotlib
- Catégorie : Data Visualization Software
- Catégorie : Box Plots
- Catégorie : Data Analysis
- Catégorie : Data Visualization
- Catégorie : Histogram
Détails à connaître

Ajouter à votre profil LinkedIn
août 2025
1 devoir
Découvrez comment les employés des entreprises prestigieuses maîtrisent des compétences recherchées

Élaborez votre expertise du sujet
- Apprenez de nouveaux concepts auprès d'experts du secteur
- Acquérez une compréhension de base d'un sujet ou d'un outil
- Développez des compétences professionnelles avec des projets pratiques
- Obtenez un certificat professionnel partageable

Il y a un module dans ce cours
This module introduces Exploratory Data Analysis (EDA), emphasizing its historical context and importance in asking the right questions of data. Learners will use Python’s matplotlib and seaborn libraries to visualize and analyze data, starting with single-variable plots like histograms and boxplots, then advancing to multi-dimensional visualizations such as scatter plots. The module also covers identifying relationships and correlations between variables, and concludes with a discussion of statistical pitfalls like Simpson’s Paradox, highlighting the need for careful interpretation of data.
Inclus
20 vidéos1 devoir
Obtenez un certificat professionnel
Ajoutez ce titre à votre profil LinkedIn, à votre curriculum vitae ou à votre CV. Partagez-le sur les médias sociaux et dans votre évaluation des performances.
En savoir plus sur Data Analysis
- Statut : Essai gratuit
University of California, Irvine
- Statut : Essai gratuit
- Statut : Essai gratuit
University of Colorado Boulder
- Statut : Essai gratuit
University of Colorado Boulder
Pour quelles raisons les étudiants sur Coursera nous choisissent-ils pour leur carrière ?





Ouvrez de nouvelles portes avec Coursera Plus
Accès illimité à 10,000+ cours de niveau international, projets pratiques et programmes de certification prêts à l'emploi - tous inclus dans votre abonnement.
Faites progresser votre carrière avec un diplôme en ligne
Obtenez un diplôme auprès d’universités de renommée mondiale - 100 % en ligne
Rejoignez plus de 3 400 entreprises mondiales qui ont choisi Coursera pour les affaires
Améliorez les compétences de vos employés pour exceller dans l’économie numérique
Foire Aux Questions
Yes, you can preview the first video and view the syllabus before you enroll. You must purchase the course to access content not included in the preview.
If you decide to enroll in the course before the session start date, you will have access to all of the lecture videos and readings for the course. You’ll be able to submit assignments once the session starts.
Once you enroll and your session begins, you will have access to all videos and other resources, including reading items and the course discussion forum. You’ll be able to view and submit practice assessments, and complete required graded assignments to earn a grade and a Course Certificate.
Plus de questions
Aide financière disponible,