Welcome to Building a Machine Learning Solution, where you'll journey through the complete lifecycle of a machine learning project. This capstone course covers critical steps from problem definition to deployment and maintenance. You'll learn to define clear problem statements, collect and preprocess data, perform exploratory data analysis (EDA), and engineer features to enhance model performance. The course guides you in selecting and implementing appropriate models, comparing classical machine learning, deep learning, and generative AI approaches. Emphasizing real-world considerations, you'll address scalability, interpretability, and ethical implications. You'll gain hands-on experience with tools like scikit-learn, TensorFlow, PyTorch, and more, ensuring you can deploy and monitor models effectively. By the end of this course, you'll be equipped to build end-to-end ML solutions that transform data into actionable insights, making informed decisions at each stage of development.

Découvrez de nouvelles compétences avec 30 % de réduction sur les cours dispensés par des experts du secteur. Économisez maintenant.


Building a Machine Learning Solution
Ce cours fait partie de Machine Learning with Scikit-learn, PyTorch & Hugging Face Certificat Professionnel

Instructeur : Professionals from the Industry
Inclus avec
Expérience recommandée
Compétences que vous acquerrez
- Catégorie : Data Manipulation
- Catégorie : Solution Design
- Catégorie : Predictive Modeling
- Catégorie : Applied Machine Learning
- Catégorie : Statistical Analysis
- Catégorie : Data Cleansing
- Catégorie : Machine Learning Methods
- Catégorie : Statistical Methods
- Catégorie : Data Ethics
- Catégorie : Data Transformation
- Catégorie : Data Analysis
- Catégorie : Generative AI
- Catégorie : Artificial Intelligence and Machine Learning (AI/ML)
- Catégorie : Data Processing
- Catégorie : Exploratory Data Analysis
- Catégorie : Data Collection
- Catégorie : MLOps (Machine Learning Operations)
- Catégorie : Feature Engineering
- Catégorie : Machine Learning
Détails à connaître

Ajouter à votre profil LinkedIn
16 devoirs
Découvrez comment les employés des entreprises prestigieuses maîtrisent des compétences recherchées

Élaborez votre expertise en Machine Learning
- Apprenez de nouveaux concepts auprès d'experts du secteur
- Acquérez une compréhension de base d'un sujet ou d'un outil
- Développez des compétences professionnelles avec des projets pratiques
- Obtenez un certificat professionnel partageable auprès de Coursera

Il y a 5 modules dans ce cours
This module guides learners through the crucial first steps of any ML project: defining clear problem statements and collecting quality data. You'll learn to formulate well-scoped ML problems based on real-world use cases, identify business and technical constraints that influence model selection, and develop skills in sourcing, collecting, and cleaning data to ensure relevance, consistency, and usability.
Inclus
2 vidéos6 lectures3 devoirs2 laboratoires non notés2 plugins
In this module, you'll learn to analyze data distributions, detect patterns, and identify anomalies through statistical and visual methods. Through hands-on practice, you'll apply feature selection and engineering techniques to enhance model performance, and learn to handle data imbalances using techniques such as oversampling, undersampling, and SMOTE.
Inclus
2 vidéos3 lectures3 devoirs2 laboratoires non notés2 plugins
Model Selection & Implementation Description: This module focuses on selecting appropriate models based on data characteristics and project requirements. You'll implement multiple models, comparing classical ML, deep learning, and generative AI approaches. Through practical exercises, you'll learn to select and implement models that best fit your use case, and use ensemble techniques to improve model performance.
Inclus
8 vidéos4 lectures4 devoirs3 laboratoires non notés3 plugins
In this module, you'll learn to evaluate models using appropriate metrics for different types of ML tasks. You'll master model interpretation using feature importance methods and address fairness and bias considerations. The module emphasizes practical approaches to ensuring model reliability and ethical implementation.
Inclus
4 vidéos5 lectures3 devoirs2 laboratoires non notés2 plugins
The final module covers the practical aspects of deploying and maintaining ML models. You'll understand different deployment strategies and learn how to monitor models for performance drift and decay. While focusing on conceptual understanding rather than deep technical implementation, you'll learn when and how models should be retrained and maintained in production environments.
Inclus
5 vidéos2 lectures3 devoirs3 plugins
Obtenez un certificat professionnel
Ajoutez ce titre à votre profil LinkedIn, à votre curriculum vitae ou à votre CV. Partagez-le sur les médias sociaux et dans votre évaluation des performances.
Instructeur

Offert par
En savoir plus sur Machine Learning
Coursera
Coursera
Coursera
Pour quelles raisons les étudiants sur Coursera nous choisissent-ils pour leur carrière ?





Ouvrez de nouvelles portes avec Coursera Plus
Accès illimité à 10,000+ cours de niveau international, projets pratiques et programmes de certification prêts à l'emploi - tous inclus dans votre abonnement.
Faites progresser votre carrière avec un diplôme en ligne
Obtenez un diplôme auprès d’universités de renommée mondiale - 100 % en ligne
Rejoignez plus de 3 400 entreprises mondiales qui ont choisi Coursera pour les affaires
Améliorez les compétences de vos employés pour exceller dans l’économie numérique
Foire Aux Questions
To access the course materials, assignments and to earn a Certificate, you will need to purchase the Certificate experience when you enroll in a course. You can try a Free Trial instead, or apply for Financial Aid. The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you enroll in the course, you get access to all of the courses in the Certificate, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile.
If you subscribed, you get a 7-day free trial during which you can cancel at no penalty. After that, we don’t give refunds, but you can cancel your subscription at any time. See our full refund policy.
Plus de questions
Aide financière disponible,