Unlock the powerful world of Machine Learning and Artificial Intelligence with our comprehensive, hands-on course on Linear Algebra. This course serves as an essential stepping stone for aspiring data scientists, AI practitioners, software developers, and tech enthusiasts eager to build a solid mathematical foundation for these high-demand fields.

Découvrez de nouvelles compétences avec 30 % de réduction sur les cours dispensés par des experts du secteur. Économisez maintenant.


Expérience recommandée
Ce que vous apprendrez
Analyse and evaluate complex data structures using advanced linear algebra techniques.
Implement sophisticated algorithms and apply advanced techniques to optimise and improve machine learning models.
Synthesise and apply mathematical theories to solve complex real-world problems.
Evaluate and develop innovative solutions using linear programming to address complex challenges in machine learning and AI systems.
Compétences que vous acquerrez
- Catégorie : Numerical Analysis
- Catégorie : Data Analysis
- Catégorie : Applied Mathematics
- Catégorie : Artificial Neural Networks
- Catégorie : Artificial Intelligence and Machine Learning (AI/ML)
- Catégorie : Linear Algebra
- Catégorie : Machine Learning
- Catégorie : Dimensionality Reduction
Détails à connaître

Ajouter à votre profil LinkedIn
août 2025
127 devoirs
Découvrez comment les employés des entreprises prestigieuses maîtrisent des compétences recherchées

Il y a 10 modules dans ce cours
In this module, you will be introduced to linear system of equations and matrices. You will also learn about the properties of matrices and operations like addition and multiplication. Finally, the module also discusses determinants and its elementary properties.
Inclus
14 vidéos5 lectures12 devoirs1 plugin
In this module, you will learn how to solve a system of linear equations and describe their nature of solutions. You will define the criteria to determine the consistency of linear systems, a concept that would help you determine the nature of solutions. Lastly, you will also gain insight into analytical methods such as the Gauss elimination method, matrix inversion method, and Cramer’s rule.
Inclus
14 vidéos3 lectures14 devoirs
In this module, you will learn about vector spaces. The concepts required to characterise vector spaces, such as linear dependence, linear independence, linear span, basis, and dimension will be discussed in detail. You will also learn linear transformation and its properties, including the rank–nullity theorem.
Inclus
18 vidéos5 lectures17 devoirs1 plugin
In this module, you will learn how to determine eigenvalues and the corresponding eigenvectors of square matrices. Certain properties of eigenvalues and eigenvectors pertaining to special matrices would be explained in detail after introducing the necessary concepts on complex numbers. You will also gain insight into computing eigenvalues numerically using the Power method.
Inclus
9 vidéos3 lectures9 devoirs
In this module, you will explore the methods of solving a linear system numerically. You will also learn methods such as decomposition methods and iterative methods, namely Gauss–Seidel and Jacobi methods, to compute solutions of linear systems.
Inclus
12 vidéos3 lectures11 devoirs1 plugin
In this module, you will learn about the formulation of Linear Programming Problems (LPP) using practical applications. You will also gain insight into the concepts of objective function and constraints.
Inclus
11 vidéos4 lectures11 devoirs1 plugin
In this module, you will learn about the graphical solution of linear programming problems with two decision variables and the basic concepts of convex sets and application to Linear Programming Problems.
Inclus
16 vidéos4 lectures15 devoirs
In this module, you will learn to solve an LPP algebraically by using a procedure called the simplex method. You will also be introduced to the concepts of slack and surplus variables, basic solution, and basic feasible solution. Lastly, you will learn to construct Simplex Tableau using matrix manipulation.
Inclus
15 vidéos3 lectures14 devoirs
In this module, you will learn the concept of artificial variables. You will also learn M-method and Two-Phase method for solving LPP. You will recognize various special cases such as unboundedness, infeasibility, and alternate optima.
Inclus
12 vidéos3 lectures11 devoirs
In this module, you will learn the construction of a dual problem and the relationship between primal and dual. You will also learn the procedure of the dual simplex method.
Inclus
13 vidéos3 lectures13 devoirs
Obtenez un certificat professionnel
Ajoutez ce titre à votre profil LinkedIn, à votre curriculum vitae ou à votre CV. Partagez-le sur les médias sociaux et dans votre évaluation des performances.
Instructeur

En savoir plus sur Machine Learning
- Statut : Essai gratuit
DeepLearning.AI
- Statut : Prévisualisation
Korea Advanced Institute of Science and Technology(KAIST)
- Statut : Prévisualisation
IIT Roorkee
- Statut : Essai gratuit
University of Colorado Boulder
Pour quelles raisons les étudiants sur Coursera nous choisissent-ils pour leur carrière ?





Ouvrez de nouvelles portes avec Coursera Plus
Accès illimité à 10,000+ cours de niveau international, projets pratiques et programmes de certification prêts à l'emploi - tous inclus dans votre abonnement.
Faites progresser votre carrière avec un diplôme en ligne
Obtenez un diplôme auprès d’universités de renommée mondiale - 100 % en ligne
Rejoignez plus de 3 400 entreprises mondiales qui ont choisi Coursera pour les affaires
Améliorez les compétences de vos employés pour exceller dans l’économie numérique
Foire Aux Questions
To access the course materials, assignments and to earn a Certificate, you will need to purchase the Certificate experience when you enroll in a course. You can try a Free Trial instead, or apply for Financial Aid. The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you enroll in the course, you get access to all of the courses in the Specialization, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile.
If you subscribed, you get a 7-day free trial during which you can cancel at no penalty. After that, we don’t give refunds, but you can cancel your subscription at any time. See our full refund policy.
Plus de questions
Aide financière disponible,