This foundational course equips learners with the conceptual knowledge and practical skills needed to perform cluster analysis—an essential unsupervised machine learning technique—using SPSS. Through a blend of theoretical exploration and hands-on implementation, learners will define, differentiate, apply, and evaluate key clustering methodologies, including hierarchical methods, k-means clustering, and Two-Step cluster analysis.

Entdecken Sie neue Fähigkeiten mit 30% Rabatt auf Kurse von Branchenexperten. Jetzt sparen.


Was Sie lernen werden
Explain clustering concepts and differentiate hierarchical, k-means, and Two-Step methods.
Apply preprocessing and clustering techniques in SPSS to segment real-world data.
Evaluate cluster quality using BIC/AIC criteria, dendrograms, and silhouette scores.
Kompetenzen, die Sie erwerben
- Kategorie: SPSS
- Kategorie: Statistical Analysis
- Kategorie: Machine Learning Algorithms
- Kategorie: Unsupervised Learning
- Kategorie: Data Cleansing
- Kategorie: Machine Learning
- Kategorie: Data Processing
- Kategorie: Statistical Methods
- Kategorie: Data Analysis
- Kategorie: Data Visualization Software
Wichtige Details

Zu Ihrem LinkedIn-Profil hinzufügen
September 2025
7 Aufgaben
Erfahren Sie, wie Mitarbeiter führender Unternehmen gefragte Kompetenzen erwerben.

In diesem Kurs gibt es 2 Module
This module introduces the fundamental principles of cluster analysis, a core technique in unsupervised machine learning. Learners will explore the conceptual basis of clustering, understand how clustering groups data points based on similarity, and investigate widely used clustering techniques including hierarchical clustering and k-means. Emphasis is placed on understanding how these methods operate, their practical applications, and the tools used to visualize and evaluate clustering results. By the end of this module, learners will gain a strong conceptual and technical foundation in clustering approaches, preparing them for more advanced machine learning techniques and real-world data segmentation tasks.
Das ist alles enthalten
8 Videos4 Aufgaben
This module focuses on the implementation and interpretation of cluster analysis techniques using SPSS. Learners will explore practical workflows involving Two-Step clustering and K-means clustering, including the evaluation of clustering quality and methods for handling missing data. Through hands-on demonstrations, students will gain experience with SPSS output interfaces, learn to navigate clustering diagnostics, and apply data preprocessing strategies such as listwise and pairwise deletion. The module equips learners with practical tools to translate unsupervised machine learning concepts into real-world analytical outputs.
Das ist alles enthalten
4 Videos3 Aufgaben
Erwerben Sie ein Karrierezertifikat.
Fügen Sie dieses Zeugnis Ihrem LinkedIn-Profil, Lebenslauf oder CV hinzu. Teilen Sie sie in Social Media und in Ihrer Leistungsbeurteilung.
Mehr von Machine Learning entdecken
- Status: Kostenloser Testzeitraum
University of Colorado Boulder
- Status: Kostenloser Testzeitraum
University of Illinois Urbana-Champaign
- Status: Kostenloser Testzeitraum
University of Colorado Boulder
Warum entscheiden sich Menschen für Coursera für ihre Karriere?





Neue Karrieremöglichkeiten mit Coursera Plus
Unbegrenzter Zugang zu 10,000+ Weltklasse-Kursen, praktischen Projekten und berufsqualifizierenden Zertifikatsprogrammen - alles in Ihrem Abonnement enthalten
Bringen Sie Ihre Karriere mit einem Online-Abschluss voran.
Erwerben Sie einen Abschluss von erstklassigen Universitäten – 100 % online
Schließen Sie sich mehr als 3.400 Unternehmen in aller Welt an, die sich für Coursera for Business entschieden haben.
Schulen Sie Ihre Mitarbeiter*innen, um sich in der digitalen Wirtschaft zu behaupten.
Häufig gestellte Fragen
To access the course materials, assignments and to earn a Certificate, you will need to purchase the Certificate experience when you enroll in a course. You can try a Free Trial instead, or apply for Financial Aid. The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you purchase a Certificate you get access to all course materials, including graded assignments. Upon completing the course, your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile.
You will be eligible for a full refund until two weeks after your payment date, or (for courses that have just launched) until two weeks after the first session of the course begins, whichever is later. You cannot receive a refund once you’ve earned a Course Certificate, even if you complete the course within the two-week refund period. See our full refund policy.
Weitere Fragen
Finanzielle Unterstützung verfügbar,