This project-based course equips learners with the skills to design, develop, and implement a personalized book recommendation system using Python. Spanning two core modules, the course introduces foundational concepts of collaborative and content-based filtering and builds toward a functional hybrid model. Learners will begin by analyzing user data, constructing user-item interaction matrices, and evaluating baseline models. They will then apply advanced data handling techniques using libraries like Pandas and NumPy, and integrate multiple recommendation strategies into a single hybrid engine.

Bringen Sie Ihre Karriere in diesem Sommer in Schwung mit Kursen von Google, IBM und anderen für £190/Jahr. Jetzt sparen.


Empfohlene Erfahrung
Kompetenzen, die Sie erwerben
- Kategorie: Python Programming
- Kategorie: Data Manipulation
- Kategorie: Scalability
- Kategorie: NumPy
- Kategorie: Predictive Modeling
- Kategorie: Machine Learning Algorithms
- Kategorie: Applied Machine Learning
- Kategorie: Unsupervised Learning
- Kategorie: Exploratory Data Analysis
- Kategorie: Data Processing
- Kategorie: Pandas (Python Package)
Wichtige Details

Zu Ihrem LinkedIn-Profil hinzufügen
Juli 2025
6 Aufgaben
Erfahren Sie, wie Mitarbeiter führender Unternehmen gefragte Kompetenzen erwerben.

In diesem Kurs gibt es 2 Module
This module introduces learners to the core structure of a personalized book recommendation system. Starting with foundational project setup, it guides through the logic of accepting user input, handling book data, and establishing a baseline model for evaluation. The module also delves into the preprocessing steps required to make user and book data machine-readable by converting identifiers into indexed forms. Learners will develop an understanding of how to construct a user-item interaction matrix and prepare the data for more advanced recommendation algorithms in future modules.
Das ist alles enthalten
7 Videos3 Aufgaben
This module guides learners through the technical implementation of a hybrid recommendation engine by combining collaborative filtering and content-based methods. It begins with foundational data processing using Python libraries like Pandas and NumPy, and progresses toward integrating both filtering approaches into a unified hybrid model. Learners will gain hands-on experience with similarity computation, function-based model construction, and performance refinement through blending multiple data signals.
Das ist alles enthalten
4 Videos3 Aufgaben
Erwerben Sie ein Karrierezertifikat.
Fügen Sie dieses Zeugnis Ihrem LinkedIn-Profil, Lebenslauf oder CV hinzu. Teilen Sie sie in Social Media und in Ihrer Leistungsbeurteilung.
Mehr von Algorithms entdecken
- Status: Kostenloser Testzeitraum
University of Minnesota
EIT Digital
Warum entscheiden sich Menschen für Coursera für ihre Karriere?





Neue Karrieremöglichkeiten mit Coursera Plus
Unbegrenzter Zugang zu 10,000+ Weltklasse-Kursen, praktischen Projekten und berufsqualifizierenden Zertifikatsprogrammen - alles in Ihrem Abonnement enthalten
Bringen Sie Ihre Karriere mit einem Online-Abschluss voran.
Erwerben Sie einen Abschluss von erstklassigen Universitäten – 100 % online
Schließen Sie sich mehr als 3.400 Unternehmen in aller Welt an, die sich für Coursera for Business entschieden haben.
Schulen Sie Ihre Mitarbeiter*innen, um sich in der digitalen Wirtschaft zu behaupten.
Häufig gestellte Fragen
Access to lectures and assignments depends on your type of enrollment. If you take a course in audit mode, you will be able to see most course materials for free. To access graded assignments and to earn a Certificate, you will need to purchase the Certificate experience, during or after your audit. If you don't see the audit option:
The course may not offer an audit option. You can try a Free Trial instead, or apply for Financial Aid.
The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you enroll in the course, you get access to all of the courses in the Specialization, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile. If you only want to read and view the course content, you can audit the course for free.
If you subscribed, you get a 7-day free trial during which you can cancel at no penalty. After that, we don’t give refunds, but you can cancel your subscription at any time. See our full refund policy.
Weitere Fragen
Finanzielle Unterstützung verfügbar,