Duke University
Interpretable Machine Learning

Entdecken Sie neue Fähigkeiten mit 30% Rabatt auf Kurse von Branchenexperten. Jetzt sparen.

Diese kurs ist nicht verfĂźgbar in Deutsch (Deutschland)

Wir Ăźbersetzen es in weitere Sprachen.
Duke University

Interpretable Machine Learning

Bei Coursera Plus enthalten

Verschaffen Sie sich einen Einblick in ein Thema und lernen Sie die Grundlagen.
4.8

(18 Bewertungen)

Stufe Mittel

Empfohlene Erfahrung

1 Woche zu vervollständigen
unter 10 Stunden pro Woche
Flexibler Zeitplan
In Ihrem eigenen Lerntempo lernen
Verschaffen Sie sich einen Einblick in ein Thema und lernen Sie die Grundlagen.
4.8

(18 Bewertungen)

Stufe Mittel

Empfohlene Erfahrung

1 Woche zu vervollständigen
unter 10 Stunden pro Woche
Flexibler Zeitplan
In Ihrem eigenen Lerntempo lernen

Was Sie lernen werden

  • Describe and implement regression and generalized interpretable models

  • Demonstrate knowledge of decision trees, rules, and interpretable neural networks

  • Explain foundational Mechanistic Interpretability concepts, hypotheses, and experiments

Kompetenzen, die Sie erwerben

  • Kategorie: Statistical Modeling
  • Kategorie: Algorithms
  • Kategorie: Data Ethics
  • Kategorie: Decision Tree Learning
  • Kategorie: Predictive Modeling
  • Kategorie: Machine Learning
  • Kategorie: Applied Machine Learning
  • Kategorie: Artificial Intelligence
  • Kategorie: Regression Analysis
  • Kategorie: Natural Language Processing
  • Kategorie: Artificial Intelligence and Machine Learning (AI/ML)
  • Kategorie: Artificial Neural Networks
  • Kategorie: Deep Learning
  • Kategorie: Python Programming
  • Kategorie: Large Language Modeling

Wichtige Details

Zertifikat zur Vorlage

Zu Ihrem LinkedIn-Profil hinzufĂźgen

Bewertungen

3 Aufgaben

Unterrichtet in Englisch

Erfahren Sie, wie Mitarbeiter fĂźhrender Unternehmen gefragte Kompetenzen erwerben.

 Logos von Petrobras, TATA, Danone, Capgemini, P&G und L'Oreal

Erweitern Sie Ihre Fachkenntnisse

Dieser Kurs ist Teil der Spezialisierung Spezialisierung fĂźr Explainable AI (XAI)
Wenn Sie sich fĂźr diesen Kurs anmelden, werden Sie auch fĂźr diese Spezialisierung angemeldet.
  • Lernen Sie neue Konzepte von Branchenexperten
  • Gewinnen Sie ein Grundverständnis bestimmter Themen oder Tools
  • Erwerben Sie berufsrelevante Kompetenzen durch praktische Projekte
  • Erwerben Sie ein Berufszertifikat zur Vorlage

In diesem Kurs gibt es 3 Module

In this module, you will be introduced to the concepts of regression and generalized models for interpretability. You will learn how to describe interpretable machine learning and differentiate between interpretability and explainability, explain and implement regression models in Python, and demonstrate knowledge of generalized models in Python. You will apply these learnings through discussions, guided programming labs, and a quiz assessment.

Das ist alles enthalten

5 Videos7 LektĂźren1 Aufgabe2 Diskussionsthemen3 Unbewertete Labore

In this module, you will be introduced to the concepts of decision trees, decision rules, and interpretability in neural networks. You will learn how to explain and implement decision trees and decision rules in Python and define and explain neural network interpretable model approaches, including prototype-based networks, monotonic networks, and Kolmogorov-Arnold networks. You will apply these learnings through discussions, guided programming labs, and a quiz assessment.

Das ist alles enthalten

8 Videos1 LektĂźre1 Aufgabe2 Diskussionsthemen3 Unbewertete Labore

In this module, you will be introduced to the concept of Mechanistic Interpretability. You will learn how to explain foundational Mechanistic Interpretability concepts, including features and circuits; describe the Superposition Hypothesis; and define Representation Learning to be able to analyze current research on scaling Representation Learning to LLMs. You will apply these learnings through discussions, guided programming labs, and a quiz assessment.

Das ist alles enthalten

6 Videos5 LektĂźren1 Aufgabe3 Diskussionsthemen1 Unbewertetes Labor

Erwerben Sie ein Karrierezertifikat.

FĂźgen Sie dieses Zeugnis Ihrem LinkedIn-Profil, Lebenslauf oder CV hinzu. Teilen Sie sie in Social Media und in Ihrer Leistungsbeurteilung.

Dozent

Brinnae Bent, PhD
Duke University
3 Kurse4.003 Lernende

von

Duke University

Mehr von Machine Learning entdecken

Warum entscheiden sich Menschen fĂźr Coursera fĂźr ihre Karriere?

Felipe M.
Lernender seit 2018
„Es ist eine großartige Erfahrung, in meinem eigenen Tempo zu lernen. Ich kann lernen, wenn ich Zeit und Nerven dazu habe.“
Jennifer J.
Lernender seit 2020
„Bei einem spannenden neuen Projekt konnte ich die neuen Kenntnisse und Kompetenzen aus den Kursen direkt bei der Arbeit anwenden.“
Larry W.
Lernender seit 2021
„Wenn mir Kurse zu Themen fehlen, die meine Universität nicht anbietet, ist Coursera mit die beste Alternative.“
Chaitanya A.
„Man lernt nicht nur, um bei der Arbeit besser zu werden. Es geht noch um viel mehr. Bei Coursera kann ich ohne Grenzen lernen.“
Coursera Plus

Neue KarrieremĂśglichkeiten mit Coursera Plus

Unbegrenzter Zugang zu 10,000+ Weltklasse-Kursen, praktischen Projekten und berufsqualifizierenden Zertifikatsprogrammen - alles in Ihrem Abonnement enthalten

Bringen Sie Ihre Karriere mit einem Online-Abschluss voran.

Erwerben Sie einen Abschluss von erstklassigen Universitäten – 100 % online

Schließen Sie sich mehr als 3.400 Unternehmen in aller Welt an, die sich für Coursera for Business entschieden haben.

Schulen Sie Ihre Mitarbeiter*innen, um sich in der digitalen Wirtschaft zu behaupten.

Häufig gestellte Fragen