Northeastern University
Data Warehousing and Integration Part 1

Entdecken Sie neue Fähigkeiten mit 30% Rabatt auf Kurse von Branchenexperten. Jetzt sparen.

Diese kurs ist nicht verfügbar in Deutsch (Deutschland)

Wir übersetzen es in weitere Sprachen.
Northeastern University

Data Warehousing and Integration Part 1

Bei Coursera Plus enthalten

Verschaffen Sie sich einen Einblick in ein Thema und lernen Sie die Grundlagen.
2 Wochen zu vervollständigen
unter 10 Stunden pro Woche
Flexibler Zeitplan
In Ihrem eigenen Lerntempo lernen
Verschaffen Sie sich einen Einblick in ein Thema und lernen Sie die Grundlagen.
2 Wochen zu vervollständigen
unter 10 Stunden pro Woche
Flexibler Zeitplan
In Ihrem eigenen Lerntempo lernen

Kompetenzen, die Sie erwerben

  • Kategorie: Data Modeling
  • Kategorie: Data Governance
  • Kategorie: Data Quality
  • Kategorie: Database Design
  • Kategorie: Data Warehousing
  • Kategorie: Data Architecture
  • Kategorie: Data Mining
  • Kategorie: SQL
  • Kategorie: Business Intelligence
  • Kategorie: Data Integration
  • Kategorie: Extract, Transform, Load
  • Kategorie: Data Analysis
  • Kategorie: Relational Databases
  • Kategorie: Data Mart
  • Kategorie: Star Schema

Wichtige Details

Zertifikat zur Vorlage

Zu Ihrem LinkedIn-Profil hinzufügen

Kürzlich aktualisiert!

August 2025

Bewertungen

13 Aufgaben

Unterrichtet in Englisch

Erfahren Sie, wie Mitarbeiter führender Unternehmen gefragte Kompetenzen erwerben.

 Logos von Petrobras, TATA, Danone, Capgemini, P&G und L'Oreal

In diesem Kurs gibt es 7 Module

This module introduces data warehousing and business intelligence, emphasizing their role in enhancing organizational decision-making. Data warehouses transform raw data into actionable insights using processes like ETL (Extract, Transform, and Load), supported by tools such as OLAP for querying and data mining. While operational databases (OLTP) are suited for daily transactions, OLAP databases are optimized for complex analytics.

Das ist alles enthalten

3 Videos6 Lektüren1 Aufgabe

This module builds on the foundations of database design from the previous module, focussing on relational database modeling, normalization, and SQL. The readings will guide you in translating a conceptual EER diagram into a relational model, ensuring adherence to normalization principles and aiming for Third Normal Form (3NF). We’ll also emphasize understanding primary keys and foreign keys for maintaining data integrity and establishing table relationships. You will also have the opportunity to create and critique relational models. We’ll then explore SQL basics, covering syntax (SELECT, INSERT, UPDATE, DELETE), querying techniques (WHERE, ORDER BY, JOIN), and operations involving functions and aggregates (COUNT, SUM, AVG, MIN, MAX), which are fundamental in database querying and management.

Das ist alles enthalten

3 Lektüren2 Aufgaben1 App-Element

This module provides an introduction to data warehouse concepts. Data warehouses are based on a multidimensional model. We will look closely into the multidimensional model and its representation as data cubes (also known as hypercubes). We’ll examine how different aspects of data are categorized into facts, measures, and dimensions. Dimensions such as Product, Time, and Customer are organized hierarchically within a cube, allowing data to be analyzed at various levels of detail. Measures such as Quantity and Sales Amount are stored within these cubes, and analysts can navigate through different levels of detail using "rolling up" and "drilling down" techniques. We will also explore key concepts such as granularity, dimension schema, and member hierarchies, which are essential in understanding how data is structured and analyzed in multidimensional models. Finally, we will learn to use techniques such as disjointness, completeness, and correctness to ensure data accuracy and integrity when aggregating information in data cubes, collectively known as summarizability.

Das ist alles enthalten

2 Videos5 Lektüren2 Aufgaben1 App-Element

In this module we’ll explore conceptual modeling with multidimensional models, visualized using MultiDim. This approach helps us organize data into facts and dimensions and understand the relationships between them, which is essential for designing data warehouses. We’ll explore topics such as dimensions (e.g., date, customer) and measures (e.g., quantity, total sales) in more detail. We’ll also explore the difference between primary events and secondary events and learn how they are used. Finally, we will look at another categorization of Measures into Flow: Level and Unit Measures.

Das ist alles enthalten

2 Videos4 Lektüren3 Aufgaben

In this module, we’ll dive into conceptual modeling of hierarchies within data warehouses, exploring their definitions, characteristics, and significance. Balanced hierarchies have a uniform structure where each child has one parent and all branches are of the same length, making data analysis consistent and efficient. In contrast, unbalanced hierarchies have varying branch lengths and missing aggregation levels, offering flexibility to model real-world scenarios like product categories and geographical hierarchies. You’ll also be introduced to generalized hierarchies, which involve "is-a" relationships between supertypes and subtypes, allowing for detailed data representation but requiring careful management of aggregation and specialization. We’ll also explore alternative hierarchies, showcasing different ways to organize the same dimension, such as calendar vs. fiscal views of time. Finally, we’ll look at parallel hierarchies, both independent and dependent, as tools for analyzing data from multiple perspectives, representing complex organizational structures. Understanding these hierarchy types is crucial for effective data management and analysis in data warehousing.

Das ist alles enthalten

4 Videos3 Lektüren2 Aufgaben

In this module, you’ll explore logical modeling in data warehousing, which is the process of designing a structured, abstract representation of data to be stored, focusing on how data is organized, related, and optimized for efficient querying and analysis. Building on what you learned in the previous modules, you'll take the next step in data warehouse design: translating a conceptual model into a logical model for implementation. The module will focus on the relational representation of data warehouses, including the study of various schema implementations: star, snowflake, starflake, and constellation. You'll also examine the rules for mapping a multidimensional conceptual model to a relational model, highlighting the role and importance of different types of keys in this process. We'll also discuss strategies for maintaining consistency in a data warehouse. Finally, you'll explore how to pre-populate certain dimensions, like time, to streamline operations and improve query performance.

Das ist alles enthalten

6 Videos11 Lektüren2 Aufgaben1 App-Element

Designing a data warehouse is a complex process that requires transitioning from high-level conceptual models to detailed logical models. This transition is critical because it bridges the gap between understanding business needs and translating them into a technical framework that effectively supports those needs. In this module, you’ll expand on the logical modeling process covered in the previous module, with a particular focus on dimensional model design and the intricacies of hierarchy modeling. As you delve deeper, you’ll encounter logical modeling for advanced concepts such as many-to-many dimensions, links between facts, and facts with multiple granularities. We’ll also explore the concept of Slowly Changing Dimensions (SCDs), which are essential for managing historical data in your warehouse. You’ll learn how to implement different SCD types to accurately track and manage changes in dimension data over time. Finally, we’ll touch on SQL for OLAP, focusing on advanced concepts like aggregation and window functions, and you’ll learn how to use SQL to query and analyze data warehouses.

Das ist alles enthalten

5 Videos11 Lektüren1 Aufgabe

Erwerben Sie ein Karrierezertifikat.

Fügen Sie dieses Zeugnis Ihrem LinkedIn-Profil, Lebenslauf oder CV hinzu. Teilen Sie sie in Social Media und in Ihrer Leistungsbeurteilung.

Dozent

Venkat Krishnamurthy
Northeastern University
3 Kurse317 Lernende

von

Mehr von Data Analysis entdecken

Warum entscheiden sich Menschen für Coursera für ihre Karriere?

Felipe M.
Lernender seit 2018
„Es ist eine großartige Erfahrung, in meinem eigenen Tempo zu lernen. Ich kann lernen, wenn ich Zeit und Nerven dazu habe.“
Jennifer J.
Lernender seit 2020
„Bei einem spannenden neuen Projekt konnte ich die neuen Kenntnisse und Kompetenzen aus den Kursen direkt bei der Arbeit anwenden.“
Larry W.
Lernender seit 2021
„Wenn mir Kurse zu Themen fehlen, die meine Universität nicht anbietet, ist Coursera mit die beste Alternative.“
Chaitanya A.
„Man lernt nicht nur, um bei der Arbeit besser zu werden. Es geht noch um viel mehr. Bei Coursera kann ich ohne Grenzen lernen.“
Coursera Plus

Neue Karrieremöglichkeiten mit Coursera Plus

Unbegrenzter Zugang zu 10,000+ Weltklasse-Kursen, praktischen Projekten und berufsqualifizierenden Zertifikatsprogrammen - alles in Ihrem Abonnement enthalten

Bringen Sie Ihre Karriere mit einem Online-Abschluss voran.

Erwerben Sie einen Abschluss von erstklassigen Universitäten – 100 % online

Schließen Sie sich mehr als 3.400 Unternehmen in aller Welt an, die sich für Coursera for Business entschieden haben.

Schulen Sie Ihre Mitarbeiter*innen, um sich in der digitalen Wirtschaft zu behaupten.

Häufig gestellte Fragen